In the finite element formulation of an Euler-Bernoulli beam element approximating the solution by a polynomial of degree four

Pushpam Kumar Sinha
Department of Mechanical Engineering, NetajiSubhas Institute of Technology, Amhara, Bihta, Patna, Bihar, India

Abstract

The governing differential equation for an EulerBernoulli beam element is of order four. Hence there are two primary variables, the solution $v(x)$ itself and its derivative $v^{\prime}(x)(v(x)$ is the transverse deflection of the beam, x is measured along the longitudinal axis of beam with origin at left hand end of beam and positive towards right), appearing in the boundary conditions. This means that for an Euler-Bernoulli beam finite element there are two nodal degrees of freedom. Therefore for a two node finite element there are four unknown quantities to be determined. The best polynomial fit to solution $v(x)$ is cubic polynomial in this case. For this approximation $v^{\prime \prime}(x)$ is linear. Bending Moment $M(x)$ is proportional to $v^{\prime \prime}(x)$. As long as $M(x)$ is also linear, the above approximation gives accurate result. However, if in any given region of the beam there is uniformly distributed load (u.d.l.), the $M(x)$ is parabolic which implies that $v^{\prime \prime}(x)$ must also be a polynomial of degree two. Now if $v^{\prime \prime}(x)$ is a polynomial of degree two, $v(x)$ must be a polynomial of degree four. Therefore in this paper we present the finite element formulation of EulerBernoulli beam element based on polynomial of degree four as the approximation function of the solution $v(x)$ of the governing differential equation. We also demonstrate the accuracy of the method by solving a certain sample problem with u.d.l. over a portion of the beam.

Keywords: Governing differential equation, Shape Function, Polynomial, Weak form Galerkin

I. INTRODUCTION

1.1 A two node Euler-Bernoulli beam element with four degrees of freedom
We begin by formulating weak form Galerkin finite element equation for a 2 -node 1 -dimensional EulerBernoulli beam element. There are several different approaches of finite element method (FEM). And weak form Galerkin is one of them $[1,2,3,4,5]$.

The basic assumption that makes an EulerBernoulli beam an Euler-Bernoulli beam is that the plane sections normal to the longitudinal axis of the beam before bending remain plane and normal to the longitudinal axis of the beam after bending. The governing differential equation of Euler-Bernoulli beam is
$\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} v}{d x^{2}}\right)+q(x)=0(1)$
The coordinate system assumed in deriving equation (1) is as shown in Fig. 1 for a simply supported beam.

Fig 1: Coordinate system fixed to the beam
In this coordinate system x-axis passes through the centroid of cross-section. In equation (1), E is Young's Modulus of Elasticity of material of the beam at position x, v is transverse deflection of the beam in y direction at position x and $q(x)$ is the intensity of the load at position x. The positive directions of the load intensity $q(x)$, the shear force V and the bending moment M are shown in Fig. 2 over an element of the beam [6].

Fig 2: Positive sign convention for $q(x), \mathrm{V}$ and M over the beam

Consider that the approximate solution to $v(x)$ in equation (1) is v_{a}^{e} for a 2-node 1dimensional general finite element e. Then the quantity $\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)+q(x)$ is not necessarily zero and this non-zero number is called the residual R of approximation. To find v_{a}^{e} we may make this residual R go to zero in a weighted-integral sense, as written below
$\int_{x_{1}^{e}}^{x_{2}^{e}} w(x)\left[\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)+q(x)\right] d x=0(2)$
where x_{1}^{e} is the position of the left hand end node of the beam element e, x_{2}^{e} is the position of the right hand end node of the beam element e, and $w(x)$ is a set of linearly independent functions called the weight functions. In form (2) the approximate solution v_{a}^{e} must be differentiable at least four times. To weaken the continuity required of v_{a}^{e}, we rewrite equation (2) using integration by parts formula
$\left[w(x) \frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)\right]_{x_{1}^{e}}^{x_{2}^{e}}-\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{d w(x)}{d x} \frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right) d x+$ $\int_{x_{1}^{e}}^{x_{2}^{e}} w(x) q(x) d x=0$

Using integration by parts formula for the second term in above equation again, we have
$\left[w(x) \frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)\right]_{x_{1}^{e}}^{x_{2}^{e}}-\left[\frac{d w(x)}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)\right]_{x_{1}^{e}}^{x_{2}^{e}}+$ $\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{d^{2} w(x)}{d x^{2}}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right) d x+$

$$
\int_{x_{1}^{e}}^{x_{2}^{e}} w(x) q(x) d x=0
$$

There are two boundary terms in equation (3) above. The dependent variable $v(x)$ of differential equation (1) appearing in same form as $w(x)$ in boundary term is primary variable. Therefore for this Euler-Bernoulli beam element there are two primary variables, $v_{a}^{e}(x)$ and $\frac{d v_{a}^{e}(x)}{d x}$, which means that there are 2 nodal degrees of freedom and therefore for this 2 node EulerBernoulli beam element there are four degrees of freedom per element. Therefore the best fit to the approximation function $v_{a}^{e}(x)$ over the element is cubic polynomial, as written below
$v_{a}^{e}(x)=a+b x+c x^{2}+d x^{3}(4)$
Specification of primary variables at boundary constitutes the Essential Boundary Conditions (EBC). The primary variables at the nodes of a typical Euler-Bernoulli beam element e is shown in Fig. 3.

Fig 3: A typical Euler-Bernoulli beam element e with the primary variables shown at nodes

Fig 4: A typical Euler-Bernoulli beam element e with the secondary variables shown at nodes
In Fig. 3, 1 and 2 are the two nodes of element e. And
$v_{a}^{e}\left(x_{1}^{e}\right)=v_{1}^{e}, \frac{d v_{a}^{e}\left(x_{1}^{e}\right)}{d x}=v_{2}^{e}, v_{a}^{e}\left(x_{2}^{e}\right)=v_{3}^{e}, \frac{d v_{a}^{e}\left(x_{2}^{e}\right)}{d x}=v_{4}^{e}(5)$
$v_{1}^{e}, v_{2}^{e}, v_{3}^{e}$ and v_{4}^{e} are called generalized displacements. Substituting equations (5) in equation (4) and finding constants of equation (4) a, b, c and d in terms of generalized displacements $v_{1}^{e}, v_{2}^{e}, v_{3}^{e}$ and v_{4}^{e} we have the following expression for $v_{a}^{e}(x)$.
$v_{a}^{e}(x)=N_{1}^{e}(x) v_{1}^{e}+N_{2}^{e}(x) v_{2}^{e}+N_{3}^{e}(x) v_{3}^{e}+N_{4}^{e}(x) v_{4}^{e}(6)$
where
$N_{1}^{e}(x)=1-\frac{3\left(x-x_{1}^{e}\right)^{2}}{L_{2}^{e^{2}}}+\frac{2\left(x-x_{1}^{e}\right)^{3}}{L^{e^{3}}}, N_{2}^{e}(x)=\left(x-x_{1}^{e}\right)-\frac{2\left(x-x_{1}^{e}\right)^{2}}{L^{e}}+\frac{\left(x-x_{1}^{e}\right)^{3}}{L^{e^{2}}},(7)$
$N_{3}^{e}(x)=\frac{3\left(x-x_{1}^{e}\right)^{2}}{L^{e^{2}}}-\frac{2\left(x-x_{1}^{e}\right)^{3}}{L^{e^{3}}}, N_{4}^{e}(x)=-\frac{\left(x-x_{1}^{e}\right)^{2}}{L^{e}}+\frac{\left(x-x_{1}^{e}\right)^{3}}{L^{L^{2}}}$
$N_{1}^{e}(x), N_{2}^{e}(x), N_{3}^{e}(x) \operatorname{and} N_{4}^{e}(x)$ are called shape functions. These are the shape functions in terms of global coordinate x. It is clear from equations (6) and (7) that $N_{1}^{e}\left(x_{1}^{e}\right)=1$ while all the other shape functions at $x=x_{1}^{e}$ are zero. Similarly $\frac{d N_{2}^{e}\left(x_{1}^{e}\right)}{d x}=1$ while the first derivative of all the other shape functions at $x=x_{1}^{e}$ are zero. Also $N_{3}^{e}\left(x_{2}^{e}\right)=1$ while all the other shape functions at $x=x_{2}^{e}$ are zero, and $\frac{d N_{4}^{e}\left(x_{2}^{e}\right)}{d x}=1$ while the first derivative of all the other shape functions at $x=x_{2}^{e}$ are zero .Considering local co-ordinate system in one dimension s, in which origin is fixed at node 1 of the beam element shown in Fig. 3, the relationship between local coordinate s and global coordinate x is
$s=x-x_{1}^{e}(8)$
Thus
$s=0$ at $x=x_{1}^{e}$
and
$s=L^{e}$ at $x=x_{2}^{e}$
The shape functions, therefore, in terms of local coordinate s for this beam element are
$N_{1}^{e}(s)=1-\frac{3 s^{2}}{L^{e^{2}}}+\frac{2 s^{3}}{L^{e^{3}}}, N_{2}^{e}(s)=s-\frac{2 s^{2}}{L^{e}}+\frac{s^{3}}{L^{e^{2}}},(9)$
$N_{3}^{e}(s)=\frac{3 s^{2}}{L^{e^{2}}}-\frac{2 s^{3}}{L^{e^{3}}}, N_{4}^{e}(s)=-\frac{s^{2}}{L^{e}}+\frac{s^{3}}{L^{e^{2}}}$
CONTINUITY REQUIREMENT ON \boldsymbol{v}_{a}^{e} :From equation (3) $v_{a}^{e}(x)$ must be at least twice differentiable; therefore the cubic polynomial fit to $v_{a}^{e}(x)$ as given by equation (4) or equations (6) and (7) fulfills the continuity requirement on $v_{a}^{e}(x)$.

The coefficients of $w(x)$ and $\frac{d w(x)}{d x}$ in boundary terms above in equation (3), i.e. $\frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)$ and $E I \frac{d^{2} v_{a}^{e}}{d x^{2}}$ are secondary variables. Specification of secondary variables at boundary constitutes the Natural Boundary Conditions (NBC). The secondary variable usually has physical meaning and for the case here $E I \frac{d^{2} v_{a}^{e}}{d x^{2}}$
is bending moment M and $\frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)$ is shear force V. Therefore, in totality, at nodes 1 and 2 of element e there are 4 NBCs as written below (see Fig. 4)
$\left.\frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)\right|_{x_{1}^{e}}=Q_{1}^{e}(10 \mathrm{a})$
$-\left.\frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)\right|_{x_{2}^{e}}=Q_{3}^{e}(10 \mathrm{c})$
$\left.E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right|_{x_{2}^{e}}=Q_{4}^{e}(10 \mathrm{~d})$
$Q_{1}^{e}, Q_{2}^{e}, Q_{3}^{e}$ and Q_{4}^{e} are called generalized forces. The positive value for term $\frac{d}{d x}\left(E I \frac{d^{2} v_{a}^{e}}{d x^{2}}\right)$ on right hand end of beam element stands for downward direction for shear force V (see Fig. 2). However, for beam element for the purposes of making finite element calculations we take upward direction of shear force at both ends positive (see Fig. 4). Hence negative sign is placed in equation (10c) on left hand side. Similarly the positive value for term $E I \frac{d^{2} v_{a}^{e}}{d x^{2}}$ on left hand end of beam element stands for clockwise sense for bending moment M (see Fig. 2). However, for beam element for the purposes of making finite element calculations we take anticlockwise sense of bending moment at both ends positive (see Fig. 4). Hence negative sign is placed in equation (10b) on left hand side.

With equations (10a) to (10d) for generalized forces, we have from equation (3)

$$
\begin{aligned}
\int_{x_{1}^{e}}^{x_{2}^{e}} E I \frac{d^{2} w(x)}{d x^{2}} \frac{d^{2} v_{a}^{e}}{d x^{2}} d x-w\left(x_{1}^{e}\right) Q_{1}^{e}-\frac{d w}{d x}\left(x_{1}^{e}\right) Q_{2}^{e}-w\left(x_{2}^{e}\right) Q_{3}^{e} & -\frac{d w}{d x}\left(x_{2}^{e}\right) Q_{4}^{e} \\
& +\int_{x_{1}^{e}}^{x_{2}^{e}} w(x) q(x) d x=0(11)
\end{aligned}
$$

or $I_{1}-B_{1}+I_{2}=0(12)$
where
$I_{1}=\int_{x_{1}^{e}}^{x_{2}^{e}} E I \frac{d^{2} w(x)}{d x^{2}} \frac{d^{2} v_{a}^{e}}{d x^{2}} d x(13 \mathrm{a})$
$B_{1}=w\left(x_{1}^{e}\right) Q_{1}^{e}+\frac{d w}{d x}\left(x_{1}^{e}\right) Q_{2}^{e}+w\left(x_{2}^{e}\right) Q_{3}^{e}+\frac{d w}{d x}\left(x_{2}^{e}\right) Q_{4}^{e}$
$I_{2}=\int_{x_{1}^{e}}^{x_{2}^{e}} w(x) q(x) d x(13 \mathrm{c})$
The Galerkin's approach for this finite element formulation states that
$w(x)=N_{j}^{e}(x), j=1,2,3,4(14)$
From equation (3) or equation (11) we see that $w(x)$ must be at least twice differentiable. With the choice of $w(x)$ as given in equation (14), the continuity requirement on $w(x)$ is fulfilled. We begin calculations for I_{1} by taking $w(x)=N_{1}^{e}(x)$ first.

CALCULATING $\boldsymbol{I}_{\mathbf{1}}$:

CASE 1: $w(x)=N_{1}^{e}(x)$
$I_{1}=\int_{x_{1}^{e}}^{x_{2}^{e}} E I \frac{d^{2}}{d x^{2}} N_{1}^{e}(x) \frac{d^{2}}{d x^{2}}\left[N_{1}^{e}(x) v_{1}^{e}+N_{2}^{e}(x) v_{2}^{e}+\right.$
N3exv3e + N4exv4e dx(15)
But
$N_{1}^{e}(x)=N_{1}^{e}\left(x-x_{1}^{e}\right), N_{2}^{e}(x)=N_{2}^{e}\left(x-x_{1}^{e}\right)$,
$N_{3}^{e}(x)=N_{3}^{e}\left(x-x_{1}^{e}\right), N_{4}^{e}(x)=N_{4}^{e}\left(x-x_{1}^{e}\right)$
Also $x-x_{1}^{e}=s$, the local coordinate (see equation (8)). Therefore the entire equation (15) can be recast in terms of local coordinate s as

$$
I_{1}=\int_{0}^{L^{e}} E I \frac{d^{2}}{d s^{2}} N_{1}^{e}(s) \frac{d^{2}}{d s^{2}}\left[N_{1}^{e}(s) v_{1}^{e}+N_{2}^{e}(s) v_{2}^{e}+\right.
$$ $N 3 e s v 3 e+N 4 e s v 4 e d s(16)$

Assume that E Iis constant throughout the length L^{e} of finite element e. Then

$$
\left.\begin{array}{rl}
I_{1}=E I \int_{0}^{L^{e}}\left(\frac{12 s}{L^{e^{3}}}\right. & \left.-\frac{6}{L^{e^{2}}}\right)\left[\left(\frac{12 s}{L^{e^{3}}}-\frac{6}{L^{e^{2}}}\right) v_{1}^{e}\right. \\
& +\left(\frac{6 s}{L^{e^{2}}}-\frac{4}{L^{e}}\right) v_{2}^{e} \\
& +\left(\frac{6}{L^{e^{2}}}-\frac{12 s}{L^{e^{3}}}\right) v_{3}^{e} \\
& +\left(\frac{6 s}{L^{e^{2}}}-\frac{2}{L^{e}}\right) v_{4}^{e}
\end{array}\right] d s .
$$

CASE 2: $w(x)=N_{2}^{e}(x)$
$I_{1}=E I\left[\begin{array}{llll}\frac{6}{L^{e^{2}}} & \frac{4}{L^{e}} & -\frac{6}{L^{e^{2}}} & \frac{2}{L^{e}}\end{array}\right]\left[\begin{array}{c}v_{1}^{e} \\ v_{2}^{e} \\ v_{3}^{e} \\ v_{4}^{e}\end{array}\right]($
CASE 3: $w(x)=N_{3}^{e}(x)$
$I_{1}=E I\left[\begin{array}{llll}-\frac{12}{L^{e^{3}}} & -\frac{6}{L^{e^{2}}} & \frac{12}{{L^{e^{3}}}}-\frac{6}{L^{e^{2}}}\end{array}\right]\left[\begin{array}{l}v_{1}^{e} \\ v_{2}^{e} \\ v_{3}^{e} \\ v_{4}^{e}\end{array}\right](1$
CASE 4: $w(x)=N_{4}^{e}(x)$
$I_{1}=E I\left[\begin{array}{llll}\frac{6}{L^{e^{2}}} & \frac{2}{L^{e}} & -\frac{6}{L^{e^{2}}} & \frac{4}{L^{e}}\end{array}\right]\left[\begin{array}{l}v_{1}^{e} \\ v_{2}^{e} \\ v_{3}^{e} \\ v_{4}^{e}\end{array}\right](17$

CALCULATING $\boldsymbol{B}_{\mathbf{1}}$:

When $w(x)=N_{1}^{e}(x), B_{1}=Q_{1}^{e}(18 \mathrm{a})$
Whenw $(x)=N_{2}^{e}(x), B_{1}=Q_{2}^{e}(18 \mathrm{~b})$
When $w(x)=N_{3}^{e}(x), B_{1}=Q_{3}^{e}(18 \mathrm{c})$
Whenw $(x)=N_{4}^{e}(x), B_{1}=Q_{4}^{e}(18 \mathrm{~d})$

CALCULATING \boldsymbol{I}_{2} :

Assume that $q(x)$ is constant over a certain finite element e and given by
$q(x)=q_{e}$ (say)
CASE 1: $w(x)=N_{1}^{e}(x)$
$I_{2}=\int_{0}^{L^{e}} N_{1}^{e}(s) q_{e} d s$
$\operatorname{or}_{2}=\frac{q_{e L^{e}}}{2}(20 \mathrm{a})$
CASE 2: $w(x)=N_{2}^{e}(x)$
$I_{2}=\int_{0}^{L^{e}} N_{2}^{e}(s) q_{e} d s$
or $I_{2}=\frac{q_{e L^{e^{2}}}}{12}(20 \mathrm{~b})$
CASE 3: $w(x)=N_{3}^{e}(x)$
$I_{2}=\int_{0}^{L^{e}} N_{3}^{e}(s) q_{e} d s$
$\operatorname{or}_{2}=\frac{q_{e L^{e}}}{2}(20 \mathrm{c})$
CASE 4: $w(x)=N_{4}^{e}(x)$
$I_{2}=\int_{0}^{L^{e}} N_{4}^{e}(s) q_{e} d s$
or $I_{2}=-\frac{q e L^{e^{2}}}{12}(20 \mathrm{~d})$
Using results of equations (17a) to (17d), (18a) to (18d), and (20a) to (20d); we write equation (12) for all the four different choices of $w(x)$ for the said beam element into one single matrix equation as
$E I\left[\begin{array}{cccc}\frac{12}{L^{e^{3}}} & \frac{6}{L^{e^{2}}} & -\frac{12}{L^{e^{3}}} & \frac{6}{L^{e^{2}}} \\ \frac{6}{L^{e^{2}}} & \frac{4}{L^{e}} & -\frac{6}{L^{e^{2}}} & \frac{2}{L^{e}} \\ -\frac{12}{L^{e^{3}}} & -\frac{6}{L^{e^{2}}} & \frac{12}{L^{e^{3}}} & -\frac{6}{L^{e^{2}}} \\ \frac{6}{L^{e^{2}}} & \frac{2}{L^{e}} & -\frac{6}{L^{e^{2}}} & \frac{4}{L^{e}}\end{array}\right]\left[\begin{array}{c}v_{1}^{e} \\ v_{2}^{e} \\ v_{3}^{e} \\ v_{4}^{e}\end{array}\right]=\left[\begin{array}{c}Q_{1}^{e} \\ Q_{2}^{e} \\ Q_{3}^{e} \\ Q_{4}^{e}\end{array}\right]-$
$\frac{q_{e} L^{e}}{2}\left[\begin{array}{c}1 \\ L^{e} / 6 \\ 1 \\ -L^{e} / 6\end{array}\right]$ (21)
This is the weak form Galerkin finite element equation for the Euler-Bernoulli beam element e. 1.2 A sample problem and its solution by the method formulated in section 1.1

PROBLEM: A cantilever beam of uniform I crosssection of length 1 m is loaded as shown in Fig.5. The cross-sectional dimensions of the beam are $b=60 \mathrm{~mm}, t=8 \mathrm{~mm}, h=120 \mathrm{~mm}$, and $h_{1}=$ 100 mm (see Fig. 6). Find the deflection, slope and
stresses in the beam using FEM.. Assume the Young's modulus of elasticity of the beam as

$$
E=200 G P a .
$$

Fig 5: A cantilever beam

Fig 6: The cross-section of the beam shown in Fig. 5
SOLUTION: Moment of inertia of beam about z Discretize the domain ($0<x<1 m$)into a axis (see Fig. 6)
$I=I_{z z}=\frac{1}{12}\left[b\left(h^{3}-h_{1}^{3}\right)+t h_{1}^{3}\right]$ minimum of two finite elements: ($0<x<$ 0.6 m) and ($0.6 \mathrm{~m}<x<1 \mathrm{~m}$). The global degrees of freedom of the beam are shown in Fig. 7. And the
or $I=4.306666667 \times 10^{-6} \mathrm{~m}^{4}$
$E I=8.6133333 \times 10^{5} \mathrm{Nm}^{2}$ element nodal degrees of freedom are shown in Fig. 8.

Fig 7: Global degrees of freedom of the beam

Fig 8: Element nodal degrees of freedom of the two finite elements 1 and 2

The beam has three nodes 1,2 and 3 as shown in Fig. 7 and Fig.8. Also from figures 7 and 8 we relate the element nodal degrees of freedom and global degrees of freedom as
$v_{1}^{1}=v_{1}, v_{2}^{1}=v_{2}, v_{3}^{1}=v_{1}^{2}=v_{3}, v_{4}^{1}=v_{2}^{2}=v_{4}$, $v_{3}^{2}=v_{5}, v_{4}^{2}=v_{6}$
Using equation (21) to write the finite element equations of finite elements 1 and 2 respectively, assembling the two equations together as one single matrix equation for the whole domain, and imposing the boundary conditions, and thereafter solving the four linear simultaneous equations in as many unknowns we have the following solution to this problem (the process of assembly and the process of deciding boundary conditions is carried out as explained in reference [1])
$v_{3}=-24.88276 \times 10^{-4} m, v_{4}=-66.914 \mathrm{x}$
$10^{-4} \mathrm{rad}$,
$v_{5}=-51.962 \times 10^{-4} m, v_{6}=-62.289957 \mathrm{x}$
$10^{-4} \mathrm{rad}$
The approximate solution to the deflection v, v_{a}^{1} for element 1 of the beam is

$$
\begin{aligned}
& v_{A}^{1}(s)=N_{3}^{1}(s) v_{3}+N_{4}^{1}(s) v_{4} \\
& \text { orv } v_{a}^{1}=44.5237037 \times 10^{-4} s^{3}-95.833 \mathrm{x} \\
& 10^{-4} s^{2}(26)
\end{aligned}
$$

The approximate solution to the deflection v, v_{a}^{2} for element 2 of the beam is
$v_{A}^{2}(s)=N_{1}^{2}(s) v_{3}+N_{2}^{2}(s) v_{4}+N_{3}^{2}(s) v_{5}$

$$
+N_{4}^{2}(s) v_{6}
$$

or $v_{a}^{2}=38.7 \mathrm{x} \quad 10^{-4} s^{3}-17.44 \mathrm{x} \quad 10^{-4} s^{2}-$
$66.914 \times 10^{-4} s-24.88276 \times 10^{-4}(27)$
The stress σ^{1} in element 1 of the beam is
$\sigma^{1}=-y E \frac{d^{2} v_{a}^{1}}{d s^{2}}$
$=-20 y(267.14222 s-191.666) M P a$
$\left(\sigma^{1}\right)_{\text {Top fibre }}=-320.57066 s+$
229.9992 MPa(28)
$\left(\sigma^{1}\right)_{\text {Top fibre }}(s=0) \cong$
$230 \mathrm{MPa},\left(\sigma^{1}\right)_{\text {Top fibre }}(s=0.6)=$
37.6568 MPa(29)

The stress σ^{2} in element 2 of the beam is
$\sigma^{2}=-y E \frac{d^{2} v_{a}^{2}}{d s^{2}}$

$$
=-20 y(232.2 s-34.88) M P a
$$

$\left(\sigma^{2}\right)_{\text {Top fibre }}=-278.64 s+41.856 \mathrm{MPa}(30)$
$\left(\sigma^{2}\right)_{\text {Top fibre }}(s=0)=$
$41.856 \mathrm{MPa},\left(\sigma^{2}\right)_{\text {Top fibre }}(s=0.4)=$
$-69.6 M P a(31)$
Note that
$\left(\sigma^{1}\right)_{\text {Top fibre }}(s=0.6) \neq\left(\sigma^{2}\right)_{\text {Top fibre }}(s=0)$
This is so because we had not ensured continuity of $\frac{d^{2} v}{d s^{2}}$ at inter-element node. From free body diagram of the beam or a portion of the beam and corresponding equations of equilibrium we know that the moment at node $1, M_{1}$ is $-16.8 \mathrm{kN}-\mathrm{m}$, and the moment at node $2, M_{2}$ is $-3 \mathrm{kN}-\mathrm{m}$. We already know from given loading conditions of the beam that the moment at node $3, M_{3}$ is $5 \mathrm{kN}-\mathrm{m}$. Therefore the stresses σ_{1}, σ_{2} and σ_{3} in the top fibre of the beam at nodes 1,2 and 3 respectively are

$$
\begin{align*}
\sigma_{1}=\frac{-0.06 M_{1}}{I} & =234 \mathrm{MPa}, \sigma_{2}=\frac{-0.06 M_{2}}{I} \\
& =41.786 \mathrm{MPa}, \sigma_{3}=\frac{-0.06 M_{3}}{I} \\
& =-69.6 \mathrm{MPa} \tag{32}
\end{align*}
$$

We note that
$\left(\sigma^{2}\right)_{\text {Top fibre }}(s=0) \cong \sigma_{2},\left(\sigma^{2}\right)_{\text {Top fibre }}(s=$ $0.4=\sigma 3$
But
$\left(\sigma^{1}\right)_{\text {Top fibre }}(s=0.6) \neq \sigma_{2} \operatorname{and}\left(\sigma^{1}\right)_{\text {Top fibre }}(s=$ 0) $\neq \sigma_{1}$

This discrepancy is due to two facts
(a) We had not ensured continuity of $\frac{d^{2} v}{d s^{2}}$ at inter-element node.
(b) The variation of bending moment in the region of the beam where uniformly distributed load acts is parabolic where as in this case $\frac{d^{2} v_{a}^{1}(s)}{d s^{2}}$ is linear. This means that by taking a polynomial
approximation to deflection v of the beam of higher degree (greater than three here), we can achieve accuracy.

In this paper we approximate v by a polynomial of degree four in the region of the beam where uniformly distributed load acts.

II. A THREE NODE EULERBERNOULLI BEAM ELEMENT WITH FIVE DEGREES OF FREEDOM

Consider the three node Euler-Bernoulli beam element e with five degrees of freedom as shown in Fig.9. Node 3 is internal to the element and mid-way between nodes 1 and 2 .

Fig 9: The 3 node Euler-Bernoulli beam element e with 5 degrees of freedom

As seen earlier in section 1.1 there are two primary variables for the Euler-Bernoulli beam element which means that there are 2 nodal degrees of freedom, and therefore for the 3 node EulerBernoulli beam element there must be six degrees of freedom per element. However, in the case as shown in Fig. 9 we consider the deflection v_{5}^{e} at node 3 as the only degree of freedom at that node. This consideration is with an important assumption that no concentrated load and no concentrated moment acts at the internal node 3 .

The best fit to approximation function $v_{a}^{e}(s)$ over such an element is a polynomial of degree four because only such a polynomial has five unknown constants to be determined in terms of five generalized displacements $v_{1}^{e}, v_{2}^{e}, v_{3}^{e}, v_{4}^{e}$ and v_{5}^{e}. Note that s is the local coordinate as discussed earlier in section 1.1. Let us derive $v_{a}^{e}(s)$ now.
$v_{a}^{e}(s)=a_{1}+a_{2} s+a_{3} s^{2}+a_{4} s^{3}+a_{5} s^{4}(33 a)$
$a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are constants
$\frac{d v_{a}^{e}(s)}{d s}=a_{2}+2 a_{3} s+3 a_{4} s^{2}+4 a_{5} s^{3}(33 \mathrm{~b})$
We know that (from Fig.9)
at $s=0, v_{a}^{e}=v_{1}^{e}, \frac{d v_{a}^{e}}{d s}=v_{2}^{e}$,
ats $=L^{e} / 2, v_{a}^{e}=v_{5}^{e}$
and at $s=L^{e}, v_{a}^{e}=v_{3}^{e}, \frac{d v_{a}^{e}}{d s}=v_{4}^{e}$
Putting these in equations (33a), (33b), and solving for $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ we have for $v_{a}^{e}(s)$
$v_{a}^{e}(s)=N_{1}^{e}(s) v_{1}^{e}+N_{2}^{e}(s) v_{2}^{e}+N_{5}^{e}(s) v_{5}^{e}+$
$N_{3}^{e}(s) v_{3}^{e}+N_{4}^{e}(s) v_{4}^{e}(34)$
where $N_{1}^{e}(s), N_{2}^{e}(s), N_{5}^{e}(s), N_{3}^{e}(s), N_{4}^{e}(s)$ are shape functions given by
$N_{1}^{e}(s)=1-\frac{11 s^{2}}{L^{e^{2}}}+\frac{18 s^{3}}{L^{e^{3}}}-\frac{8 s^{4}}{L^{e^{4}}}, N_{2}^{e}(s)=s-$
$\frac{4 s^{2}}{L^{e}}+\frac{5 s^{3}}{L^{e^{2}}}-\frac{2 s^{4}}{L^{e^{3}}}$,
$N_{5}^{e}(s)=\frac{16 s^{2}}{L^{e^{2}}}-\frac{32 s^{3}}{L^{e^{3}}}+\frac{16 s^{4}}{L^{e^{4}}}, N_{3}^{e}(s)=-\frac{5 s^{2}}{L^{e^{2}}}+$ $\frac{14 s^{3}}{L^{e^{3}}}-\frac{8 s^{4}}{L^{e^{4}}},(35)$

$$
N_{4}^{e}(s)=\frac{s^{2}}{L^{e}}-\frac{3 s^{3}}{L^{e^{2}}}+\frac{2 s^{4}}{L^{e^{3}}}
$$

III. WEAK FORM GALERKIN FINITE ELEMENT FORMULATION OF THE ELEMENT DISCUSSED IN SECTION 2

The weak form of the governing differential equation (1) for the beam element discussed in section 3 in terms of local coordinate s is

$$
\begin{array}{r}
\int_{0}^{L^{e}} E I \frac{d^{2} w}{d s^{2}} \frac{d^{2} v_{a}^{e}}{d s^{2}} d s-w(0) Q_{1}^{e}-\frac{d w}{d s}(0) Q_{2}^{e} \\
-w\left(L^{e} / 2\right) Q_{5}^{e}-\frac{d w}{d s}\left(L^{e} / 2\right) Q_{6}^{e} \\
-w\left(L^{e}\right) Q_{3}^{e}-\frac{d w}{d s}\left(L^{e}\right) Q_{4}^{e} \\
+\int_{0}^{L^{e}} w(s) q(s) d s= \tag{36}
\end{array}
$$

where

$$
\begin{aligned}
& Q_{1}^{e}=\left.\frac{d}{d s}\left(E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right)\right|_{0}, Q_{2}^{e}=-\left.E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right|_{0}, Q_{3}^{e} \\
&=-\left.\frac{d}{d s}\left(E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right)\right|_{L^{e}}, Q_{4}^{e} \\
&=\left.E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right|_{L^{e}}
\end{aligned}
$$

$$
\begin{gathered}
Q_{5}^{e}=\left[-\left.\frac{d}{d s}\left(E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right)\right|_{\frac{L^{e^{-}}}{2}}+\left.\frac{d}{d s}\left(E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right)\right|_{\frac{L^{e^{+}}}{2}}\right],(37) \\
Q_{6}^{e}=\left[\left(\left.E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right|_{\frac{L^{e^{-}}}{2}}\right)+\left(-\left.E I \frac{d^{2} v_{a}^{e}}{d s^{2}}\right|_{\frac{L^{e^{+}}}{2}}\right)\right]
\end{gathered}
$$

Also $Q_{5}^{e}=$ Externally applied concentrated load at node $3=0$ (for this case)
and $Q_{6}^{e}=$ Externally applied concentrated moment at node $3=0$ (for this case)
Equation (36) can be re-written as
$I_{1}-B_{1}+I_{2}=0(38)$
where
$I_{1}=\int_{0}^{L^{e}} E I \frac{d^{2} w}{d s^{2}} \frac{d^{2} v_{a}^{e}}{d s^{2}} d s(39 a)$
$B_{1}=w(0) Q_{1}^{e}+\frac{d w}{d s}(0) Q_{2}^{e}+w\left(L^{e}\right) Q_{3}^{e}+$
$\frac{d w}{d s}\left(L^{e}\right) Q_{4}^{e}(39 \mathrm{~b})$
$I_{2}=\int_{0}^{L^{e}} w(s) q(s) d s(39 \mathrm{c})$
To apply the Galerkin's approach to the weak form (38) we take
$w(s)=N_{j}^{e}(s), j=1,2,3,4,5$
(40)

Calculating I_{1}, B_{1}, I_{2} for the different forms of $w(s)$ separately one by one, as stated in equation (40), we get the following weak form Galerkin finite element equation for the beam element discussed in section 2
$E I\left[\begin{array}{ccccc}\frac{63.2}{L^{e^{3}}} & \frac{33.8}{L^{e^{2}}} & \frac{-102.4}{L^{e^{3}}} & \frac{39.2}{L^{e^{3}}} & \frac{-6.8}{L^{e^{2}}} \\ \frac{33.8}{L^{e^{2}}} & \frac{7.2}{L^{e}} & \frac{-25.6}{L^{e^{2}}} & \frac{6.8}{L^{e^{2}}} & \frac{-1.2}{L^{e}} \\ \frac{-102.4}{L^{e^{3}}} & \frac{-25.6}{L^{e^{2}}} & \frac{204.8}{L^{e^{3}}} & \frac{-102.4}{L^{e^{3}}} & \frac{25.6}{L^{e^{2}}} \\ \frac{39.2}{L^{e^{3}}} & \frac{6.8}{L^{e^{2}}} & \frac{-102.4}{L^{e^{3}}} & \frac{63.2}{L^{e^{3}}} & \frac{-18.8}{L^{e^{2}}} \\ \frac{-6.8}{L^{e^{2}}} & \frac{-1.2}{L^{e}} & \frac{25.6}{L^{e^{2}}} & \frac{-18.8}{L^{e^{2}}} & \frac{7.2}{L^{e}}\end{array}\right]\left[\begin{array}{c}v_{1}^{e} \\ v_{2}^{e} \\ v_{5}^{e} \\ v_{3}^{e} \\ v_{4}^{e}\end{array}\right]=$
$\left[\begin{array}{c}Q_{1}^{e} \\ Q_{2}^{e} \\ 0 \\ Q_{3}^{e} \\ Q_{4}^{e}\end{array}\right]+q_{e} L^{e}\left[\begin{array}{c}-7 / 30 \\ -L^{e} / 60 \\ -8 / 15 \\ -7 / 30 \\ L^{e} / 60\end{array}\right](41)$
In deriving equation (41) it is assumed that $E I$ is constant over the length L^{e} of the beam element and $q(s)$ also is constant equal to q_{e} over the length L^{e} of the beam element e .

IV. SAMPLE PROBLEM OF SECTION 1.2 BUT WITH SOLUTION BASED ON FORMULATION IN SECTION 3

Discretize the domain $(0<x<1 m)$ into a minimum of two finite elements: $(0<x<$ 0.6 m) and ($0.6 \mathrm{~m}<x<1 \mathrm{~m}$). The global degrees of freedom of the beam are shown in Fig. 10. And the element nodal degrees of freedom are shown in Fig. 11. It is obvious from Fig. 11 that the finite element 1 is a 3 node Euler-Bernoulli beam element, where as the finite element 2 is a 2 node EulerBernoulli beam element. Hence, the formulation derived in section 3 applies to the finite element 1 , where as that derived in section 1.1 applies to the finite element 2. From figures 10 and 11 we relate element nodal degrees of freedom and global degrees of freedom as

$$
\begin{aligned}
& v_{1}^{1}=v_{1}, v_{2}^{1}=v_{2}, v_{3}^{1}=v_{1}^{2}=v_{3}, v_{4}^{1}=v_{2}^{2} \\
& =v_{4}, v_{5}^{1}=v_{5}, v_{3}^{2}=v_{6}, v_{4}^{2}=v_{7}
\end{aligned}
$$

(4)

Fig 10: Global degrees of freedom of the beam

Fig 11: Element nodal degrees of freedom of the two finite elements 1 and 2
The finite element equation of element 1 is (putting $L^{1}=0.6 \mathrm{~m}$ and $q_{1}=10000 \mathrm{~N} / \mathrm{m}$ in equation (41))
$E I\left[\begin{array}{ccccc}292.59 & 93.89 & -474.07 & 181.48 & -18.89 \\ 93.89 & 12 & -71.11 & 18.89 & -2 \\ -474.07 & -71.11 & 948.15 & -474.07 & 71.11 \\ 181.48 & 18.89 & -474.07 & 292.59 & -52.22 \\ -18.89 & -2 & 71.11 & -52.22 & 12\end{array}\right]\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{5} \\ v_{3} \\ v_{4}\end{array}\right]=\left[\begin{array}{c}Q_{1}^{1}-1400 \\ Q_{2}^{1}-60 \\ -3200 \\ Q_{3}^{1}-1400 \\ Q_{4}^{1}+60\end{array}\right](42)$
The finite element equation of element 2 is (putting $L^{2}=0.4 m$ and $q_{2}=0$ in equation (21))
EI $\left[\begin{array}{cccc}187.5 & 37.5 & -187.5 & 37.5 \\ 37.5 & 10 & -37.5 & 5 \\ -187.5 & -37.5 & 187.5 & -37.5 \\ 37.5 & 5 & -37.5 & 10\end{array}\right]\left[\begin{array}{l}v_{3} \\ v_{4} \\ v_{6} \\ v_{7}\end{array}\right]=\left[\begin{array}{l}Q_{1}^{2} \\ Q_{2}^{2} \\ Q_{3}^{2} \\ Q_{4}^{2}\end{array}\right]$ (43)
The boundary conditions are
$v_{1}=0, v_{2}=0(44 a)$
$Q_{3}^{1}+Q_{1}^{2}=$ Externally applied concentrated load at node $2=0(44 \mathrm{~b})$
$Q_{4}^{1}+Q_{2}^{2}=$ Externally applied concentrated moment at node $2=0(44 \mathrm{c})$
$Q_{3}^{2}=-20000, Q_{4}^{2}=5000(44 \mathrm{~d})$
Assembling element equations (42) and (43) together into one single matrix equation and using equations (44a) to (44d), we have
$E I\left[\begin{array}{ccccccc}292.59 & 93.89 & -474.07 & 181.48 & -18.89 & 0 & 0 \\ 93.89 & 12 & -71.11 & 18.89 & -2 & 0 & 0 \\ -474.07 & -71.11 & 948.15 & -474.07 & 71.11 & 0 & 0 \\ 181.48 & 18.89 & -474.07 & 480.09 & -14.72 & -187.5 & 37.5 \\ -18.89 & -2 & 71.11 & -14.72 & 22 & -37.5 & 5 \\ 0 & 0 & 0 & -187.5 & -37.5 & 187.5 & -37.5 \\ 0 & 0 & 0 & 37.5 & 5 & -37.5 & 10\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ v_{5} \\ v_{3} \\ v_{4} \\ v_{6} \\ v_{7}\end{array}\right]$
$=\left[\begin{array}{c}Q_{1}^{1}-1400 \\ Q_{2}^{1}-60 \\ -3200 \\ -1400 \\ 60 \\ -20000 \\ 5000\end{array}\right](45)$
From rows $3,4,5,6$ and 7 respectively of the equation (45) we have five linear simultaneous equations in as many unknowns; solving them (by, say, Gauss elimination method) we have
$v_{5}=-7.45 \times 10^{-4} \mathrm{~m}, v_{3}=-24.85 \times 10^{-4} \mathrm{~m}, v_{4}=-66.82 \times 10^{-4} \mathrm{rad}$,
$v_{6}=-51.89 \times 10^{-4} \mathrm{~m}, v_{7}=-62.18 \times 10^{-4} \mathrm{rad}$
The approximate solution to the deflection v, v_{a}^{1} for element 1 of the beam is
$v_{A}^{1}(s)=N_{5}^{1}(s) v_{5}+N_{3}^{1}(s) v_{3}+N_{4}^{1}(s) v_{4}$
orv $v_{a}^{1}=-4.50617 \times 10^{-4} s^{4}+49.88888 \times 10^{-4} s^{3}-97.33889 \times 10^{-4} s^{2}(46 \mathrm{a})$
The stress σ^{1} in element 1 of the beam is
$\sigma^{1}=-y E \frac{d^{2} v_{a}^{1}}{d s^{2}}$

$$
\begin{gather*}
=-20 y\left(-54.07404 s^{2}+299.33328 s-194.67778\right) \mathrm{MPa} \\
\left(\sigma^{1}\right)_{\text {Top fibre }}=64.88885 \mathrm{~s}^{2}-359.19994 \mathrm{~s}+233.61334 \mathrm{MPa}(47) \\
\left(\sigma^{1}\right)_{\text {Top fibre }}(s=0) \cong 234 \mathrm{MPa},\left(\sigma^{1}\right)_{\text {Top fibre }}(s=0.6) \cong 41.8 \mathrm{MPa} \tag{48}
\end{gather*}
$$

We note that v_{3}, v_{4}, v_{6} and v_{7} calculated in this section is almost same as v_{3}, v_{4}, v_{5} and v_{6} respectively calculated in the section 1.2. Therefore, the stress σ^{2} in element 2 of the beam in top fibre is
$\left(\sigma^{2}\right)_{\text {Top fibre }}=-278.64 s+41.856 M P a(49)$
$\left(\sigma^{2}\right)_{\text {Top fibre }}(s=0) \cong 41.8 \mathrm{MPa},\left(\sigma^{2}\right)_{\text {Top fibre }}(s=0.4)=-69.6 \mathrm{MPa}$
We note that in this formulation we get nearly correct values for $\left(\sigma^{1}\right)_{\text {Top fibre }}(s=0)$, and $\left(\sigma^{1}\right)_{\text {Top fibre }}(s=$ 0.6 , as given by equations (32).

V. CONCLUSIONS AND DISCUSSION

Approximating the solution of governing differential equation (1) by an interpolating polynomial of degree four in the region of the beam where uniformly distributed load (u.d.l.) acts gives accurate result for the sample problem treated by FEM in this paper. Notable in my work is that I have considered the partial degrees of freedom (five instead of six for a 3 node Euler-Bernoulli beam element), where as, the weak form of equation (1) advocated for the presence of two nodal degrees of freedom. Though I neglected one nodal degree of freedom at the internal node, the formulation gave correct result for the sample problem discussed in this paper. Additionally, to keep things simple, I had assumed that the external concentrated load and the external concentrated moment at the internal node of 3 node EulerBernoulli beam element are zero. To get an idea of the complication involved otherwise, define \boldsymbol{B}_{1} from equation (36) as
$B_{1}=w(0) Q_{1}^{e}+\frac{d w}{d s}(0) Q_{2}^{e}+w\left(L^{e} / 2\right) Q_{5}^{e}+$
$\frac{d w}{d s}\left(L^{e} / 2\right) Q_{6}^{e}+w\left(L^{e}\right) Q_{3}^{e}+\frac{d w}{d s}\left(L^{e}\right) Q_{4}^{e}$
Whenw $(s)=N_{1}^{e}(s)$,
$B_{1}=Q_{1}^{e}-\frac{3 Q_{6}^{e}}{2 L^{e}}$
We get corresponding results for $w(s)=$ $N_{j}^{e}(s), j=2,5,3,4$

We had, in this paper, solved the sample problem by weak form Galerkin Finite Element Formulation. However, this is not the only approach of FEM by which we can treat the EulerBernoulli beam. For local elasticity, which is the case here for the sample problem discussed, the principle of minimum total potential energy also can be used to derive the finite element formulation [7]. For nonlocal elasticity theory, discussed in paper [7], the principle of minimum total potential energy cannot be used; instead the weak from Galerkin approach is the better alternative. In local elasticity, the stress at a point can be uniquely written in terms of the strain at that point, but in non-local elasticity it cannot be done so.

In [8], Sanjay Kumar has compared analytical solution and FEM solution of cantilever beam subjected to u.d.l. and v.d.l. (varying distributed load), and he confesses that the FEM solution is slightly different from the analytical because the interpolating polynomial, to solution, assumed by the FEM was a cubic polynomial. In this paper I had proposed a remedy to this very problem.

In both my work and work [8], the beam considered was cantilever beam. However, in [9], Gunakala S.R. et al proposed the Finite Element solution for simply supported and clamped beam under uniform load. But they did not point out the same inconsistency in result as pointed by me here and by Sanjay Kumar in [8].

REFERENCES

[1]. Bathe K-J. (2014). Finite Element Procedures. Prentice Hall, Pearson Education, Inc.. Watertown, MA, USA.
[2]. Desai YM, Eldho TI, and Shah AH. (2011). Finite Element Method with Applications in Engineering. Pearson, Noida.
[3]. Prudhomme S, and Cottereau R. (Fall 2016). An Introduction to the Finite Element Method with ComsolMultiphysics. Lecture Notes MTH8207. EcolePolytechnique De Montreal.
[4]. Rao SS. (2011). The Finite Element Method in Engineering. Butterworth-Heinemann. MA01803, USA.
[5]. Reddy JN. (2005). An Introduction to the Finite Element Method. Tata McGraw-Hill Publishing Company Limited. New Delhi.
[6]. Gere JM, and Goodno BJ. (2009). Mechanics of Materials. Cengage Learning India Private Limited. Delhi.
[7]. Phadikar JK, and Pradhan SC. (2010). Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Computational Materials Science; 49:492-499.
[8]. Kumar S. (2016). Comparison of deflection and slope of cantilever beam with Analytical
and Finite Element Method for different loading conditions. International Journal of Engineering Science and Innovative Technology; Vol. 5, Issue 6:45-51.
[9]. Gunakala SR, et al. (2012). A Finite Element Solution of the beam equation via MATLAB. International Journal of Applied Science and Technology; Vol. 2, No. 8:8088. Engineering and Management IJAEM ISSN: 2395-5252

IJAEM

Volume: 02 Issue: 01

DOI: 10.35629/5252
www.ijaem.net
Email id: ijaem.paper@gmail.com

